This book gives relatively elegant proofs of theorems from many different fields of mathematics, and often gives multiple proofs for the same theorem. Numbers and proofs presents a gentle introduction to the notion of proof to give the reader an understanding of how to decipher others proofs as well as construct their own. A prof recommended this book after mentioning that a theorem just proved is definitely in the book. The book is dedicated to the mathematician paul erdos, who often referred to. During a lecture in 1985, erdos said, you dont have to believe in god, but you should. Ulam remarked that it was said you are not a real mathematician if you dont know paul erdos. This proves that there are infinitely many primes and that the series of the sum of prime reciprocal steps diverges. Ziegler preface to the third edition we would never have dreamt, when preparing the first edition of this book in 1998, of the great success this project would have, with translations into many languages, enthusiastic responses from so many readers, and so many. Download for offline reading, highlight, bookmark or take notes while you read proofs from the book. Is it possible that any theorem in number theory can be proved without use of the complex numbers. It gets diluted with degrees of author publishing away from erdos, or the.
Paul erdos, born march 26, 19, budapest, hungarydied september 20, 1996, warsaw, poland, hungarian freelance mathematician known for his work in number theory and combinatorics and legendary eccentric who was arguably the most prolific mathematician of the 20th century, in terms of both the number of problems he solved and the number of problems he convinced others to tackle. In the late 1980s erdos heard of a promising high school student named glen whitney who wanted to study mathematics at harvard but was a little short of the tuition. Click download or read online button to get numbers and proofs book now. Useful methods of proof are illustrated in the context of studying problems concerning mainly numbers real, rational, complex and integers. Anyone who has coauthored a paper with someone with erdos number 1 is. It does require some calculus and linear algebra background, but if you have that, you should be able to follow most of the proofs in this book. But recently, following a spate of mathematical films such as good will hunting, an elite group of people have emerged, namely those who have appeared in films and written mathematical papers, and therefore qualify for erdosbacon numbers. The story of paul erdos and the search for mathematical truth. Its thirty chapters, divided into sections on number theory, geometry, analysis. The site is maintained by jerry grossman at oakland university.
On the one hand, it seems a lot of the theorems using in analytic number theory are about the distributions of primes. The following proof is taken from the book proofs from the book by martin aigner and gunter ziegler. The book is sectioned into five different categories. The collection was inspired by the legendary mathematician paul erdos, who envisioned an infinite book in which god had written the perfect proof for each theorem. The book is dedicated to the mathematician paul erdos, who often referred to the book in which god keeps the most elegant proof of each mathematical theorem. If erdos is still alive, i am sure it is something like the mathematician who publishes with erdos a major result with fewest coauthors. Erdos resources 1 the man who loved only numbers, book by paul hoffman, 1998, based on his atlantic monthly article from 1989. It is said that erdos could multiply threedigit numbers in his head at the age three, and discovered the concept of negative numbers when he was four. The resulting volume, proofs from the book, was published in 1998, sadly too. The man who loved only numbers is an interesting read from multiple aspects. Join researchgate to find the people and research you need to help your work. We show that an old but not wellknown lower bound for the crossing number of a graph yields short proofs for a number of bounds in discrete plane geometry which were considered hard before. Inside pftb proofs from the book is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways.
Proofs from the book is a book of mathematical proofs by martin aigner and gunter m. Paul erdos was the most prolific pure mathematician in history and, arguably, the strangest too. Since the fermat numbers are infinite, then this implies that it requires an infinite amount of primes to construct all possible fermat numbers. God has the big book, the beautiful proofs of mathematical theorems are listed here.
Profile for paul erdos from the man who loved only numbers. This book is the fourth edition of aigner and zieglers attempt to find proofs that erdos would find appealing. What proofs are definitely not in the book submitted 2 years ago by al2718x erdos liked to talk about gods book of math proofs, which contains the most elegant proofs of each theorem i strongly recommend proofs from the book by aigner and ziegler which atttempts to gather such proofs and present them at a level perfect for an advancced. Heiligman has been influenced as she acknowledges by paul hoffmans 1998 book,the man who loved only numbers. Perfect proofs from gods great book erdoss mathematical interests were vast and varied. Crossing numbers and hard erdos problems in discrete. Gunter ziegler and martin aigner seek gods perfect math proofs. Ziegler have started their work on proofs from the book in 1995 together with paul erdos. Some of the proofs are classics, but many are new and brilliant proofs of classical results. Hoffman allows the reader to move through the book smiling, avoiding indepth, tortuous mathematical proofs or other indepth mathematical theory. Paul erdos english version mactutor history of mathematics.
Since the prime number theorem has an elementary proof, this might suggest that elementary proofs exist in other cases. Paul erdos was a hungarian born mathematician famous for his brilliantly elegant proofs of seemingly unsolvable mathematical problems, especially in the area of numbers theory. The book is about erdos, not math, and hoffman manages to keep the focus on the strange little man from hungary and. He founded the field of discrete mathematics, the foundation of computer science, and was one of the most prolific mathematicians in history. Big list of erdos elementary proofs mathematics stack. This proof was given by christian goldbach in a letter to euler in. For most of his career he did not have a conventional position. This revised and enlarged fourth edition of proofs from the book features five new chapters, which treat classical results such as the fundamental theorem of algebra, problems about tilings, but also quite recent proofs, for example of the kneser conjecture in graph theory. The infinite primes and museum guard proofs, explained. Awards and other earnings were generally donated to people in need and various worthy causes. We consider the socalledmersenne number 2 p 1 and show that any prime factor q of 2 p 1. Brazilian, chinese, german, farsi, french, hungarian, italian, japanese, korean, polish, russian, spanish, and turkish.
It shows that any two fermat numbers are relatively prime. Today i want to share a couple of my favorite proofs from the book. In this talk, we use a linearized form of the generalized erdos numbers. Book edited by alan baker, bela bollobas and andras hajnal. Aliens invade the earth and threaten to obliterate it in a years time unless human beings can find the ramsey number for red five and blue five that is, r5,5. The authors have done an excellent job choosing topics and proofs that erdos would have appreciated. This revised and enlarged fourth edition of proofs from the book features five. In 1933, at the age of 20, erdos had found an elegant elementary proof of chebyshevs theorem, and this result catapulted him onto the world mathematical stage. When paul would become bored, he would browse in the mathematics books. This later inspired a book titled proofs from the book. There are 337,000 mathematicians who can be linked to erdos in this way. David hilbert famously declared that no one shall expel us from the paradise that cantor has created. Six proofs of the infinitude of the primes, including euclid s and furstenbergs. Ziegler have started their work on proofs from the book in 1995 together with paul erdoes.
What are some interesting stories about paul erdos. Numbers and proofs download ebook pdf, epub, tuebl, mobi. This site is like a library, use search box in the widget to get ebook that you want. Erdos proof of infinite primes the following proof is taken from the book proofs from the book by martin aigner and gunter ziegler. Complex and elementary proofs in number theory mathoverflow. The set of real numbers, for example, is uncountable meaning that it cannot be paired up with the set of natural numbers. There is vast wealth within its pages, one gem after another. The mathematical heroes of this book are perfect proofs. Other idiosyncratic elements of erdoss vocabulary include. He was one of the most prolific mathematicians of the 20th century, but also known for his social practice of mathematics more than 500 collaborators and eccentric lifestyle time magazine called him the oddballs oddball. In 1933, at the age of 20, erdos had found an elegant elementary proof of chebyshevs theorem, and this. The second and the third proof use special wellknown number sequences. The next proof examines a certain set of numbers namely fermat numbers.
1557 585 1435 310 515 1102 1177 620 355 1301 1344 1211 155 1190 138 625 73 429 1394 806 1005 742 1307 1131 1198 877 558 1329 398 1120 1130 726 228 1390 1446